Prevalence of Molecular Mechanisms of Resistance to Azole Antifungal Agents in Candida albicans Strains Displaying High-Level Fluconazole Resistance Isolated from Human Immunodeficiency Virus-Infected Patients

Author:

Perea Sofia1,López-Ribot José L.1,Kirkpatrick William R.1,McAtee Robert K.1,Santillán Rebecca A.1,Martı́nez Marcos1,Calabrese David2,Sanglard Dominique2,Patterson Thomas F.13

Affiliation:

1. Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio,1 and

2. Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland2

3. Audie L. Murphy Division, South Texas Veterans Health Care System,3 San Antonio, Texas, and

Abstract

ABSTRACT Molecular mechanisms of azole resistance in Candida albicans , including alterations in the target enzyme and increased efflux of drug, have been described, but the epidemiology of the resistance mechanisms has not been established. We have investigated the molecular mechanisms of resistance to azoles in C. albicans strains displaying high-level fluconazole resistance (MICs, ≥64 μg/ml) isolated from human immunodeficiency virus (HIV)-infected patients with oropharyngeal candidiasis. The levels of expression of genes encoding lanosterol 14α-demethylase ( ERG11 ) and efflux transporters ( MDR1 and CDR) implicated in azole resistance were monitored in matched sets of susceptible and resistant isolates. In addition, ERG11 genes were amplified by PCR, and their nucleotide sequences were determined in order to detect point mutations with a possible effect in the affinity for azoles. The analysis confirmed the multifactorial nature of azole resistance and the prevalence of these mechanisms of resistance in C. albicans clinical isolates exhibiting frank fluconazole resistance, with a predominance of overexpression of genes encoding efflux pumps, detected in 85% of all resistant isolates, being found. Alterations in the target enzyme, including functional amino acid substitutions and overexpression of the gene that encodes the enzyme, were detected in 65 and 35% of the isolates, respectively. Overall, multiple mechanisms of resistance were combined in 75% of the isolates displaying high-level fluconazole resistance. These results may help in the development of new strategies to overcome the problem of resistance as well as new treatments for this condition.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3