Affiliation:
1. Institute of Molecular Medicine, National Taiwan University Medical School
2. Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
Abstract
ABSTRACT
Mcl-1 is one Bcl-2 family member that plays a pivotal role in animal development. The extremely labile nature of the Mcl-1 protein itself and the fact that the Mcl-1 level is a critical determinant in various cell survival pathways suggest that cellular processes that regulate Mcl-1 stability are as important as those that regulate Mcl-1 synthesis. Although transcriptional stimulation of Mcl-1 synthesis in response to various stimuli has been well documented, regulation of Mcl-1 stability has been hardly explored. In this study, we identified that the translationally controlled tumor protein (TCTP) was one cellular factor that interacted with Mcl-1 and modulated Mcl-1 stability. While overexpression of TCTP augmented the protein stability of Mcl-1, knockdown expression of TCTP by RNA interference destabilized Mcl-1. Furthermore, TCTP stabilized Mcl-1 through interfering with Mcl-1's degradation by the ubiquitin-dependent proteasome degradation pathway, and the TCTP binding-defective mutant of Mcl-1 (K257V) was much more susceptible to degradation and manifested a compromised antiapoptotic activity. Taken together, these results suggest that TCTP modulates Mcl-1's antiapoptotic activity by modulating its protein stability. The possible mechanism(s) involved in TCTP's modulation process is discussed.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference40 articles.
1. Akgul, C., D. A. Moulding, and S. W. Edwards. 2001. Molecular control of neutrophil apoptosis. FEBS Lett. 487 : 318-322.
2. Altmeyer, A., R. C. Simmons, S. Krajewski, J. C. Reed, G. W. Bornkamm, and S. Chen-Kiang. 1997. Reversal of EBV immortalization precedes apoptosis in IL-6-induced human B-cell terminal differentiation. Immunity 5 : 667-677.
3. Bohm, H., R. Benndorf, M. Gaestel, B. Gross, P. Nurnberg, R. Kraft, A. Otto, and H. Bielka. 1989. The growth-related protein P23 of the Ehrlich ascites tumor: translational control, cloning and primary structure. Biochem. Int. 19 : 277-286.
4. Brummelkamp, T. R., R. Bernards, and R. Agami. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296 : 550-553.
5. Cans, C., B. J. Passer, V. Shalak, V. Nancy-Portebois, V. Crible, N. Amzallag, D. Allanic, R. Tufino, M. Argentini, D. Moras, G. Fiucci, B. Goud, M. Mirande, R. Amson, and A. Telerman. 2003. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. USA 100 : 13892-13897.
Cited by
207 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献