Author:
Honeyman Laura,Ismail Mohamed,Nelson Mark L.,Bhatia Beena,Bowser Todd E.,Chen Jackson,Mechiche Rachid,Ohemeng Kwasi,Verma Atul K.,Cannon E. Pat,Macone Ann,Tanaka S. Ken,Levy Stuart
Abstract
ABSTRACTA series of novel tetracycline derivatives were synthesized with the goal of creating new antibiotics that would be unaffected by the known tetracycline resistance mechanisms. New C-9-position derivatives of minocycline (the aminomethylcyclines [AMCs]) were tested forin vitroactivity against Gram-positive strains containing known tetracycline resistance mechanisms of ribosomal protection (Tet M inStaphylococcus aureus,Enterococcus faecalis, andStreptococcus pneumoniae) and efflux (Tet K inS. aureusand Tet L inE. faecalis). A number of aminomethylcyclines with potentin vitroactivity (MIC range of ≤0.06 to 2.0 μg/ml) were identified. These novel tetracyclines were more active against one or more of the resistant strains than the reference antibiotics tested (MIC range, 16 to 64 μg/ml). The AMC derivatives were active against bacteria resistant to tetracycline by both efflux and ribosomal protection mechanisms. This study identified the AMCs as a novel class of antibiotics evolved from tetracycline that exhibit potent activityin vitroagainst tetracycline-resistant Gram-positive bacteria, including pathogenic strains of methicillin-resistantS. aureus(MRSA) and vancomycin-resistant enterococci (VRE). One derivative, 9-neopentylaminomethylminocycline (generic name omadacycline), was identified and is currently in human trials for acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP).
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献