Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins

Author:

Ielasi Francesco S.1,Alioscha-Perez Mitchel2,Donohue Dagmara1,Claes Sandra3,Sahli Hichem24,Schols Dominique3,Willaert Ronnie G.1

Affiliation:

1. Department of Bioengineering Sciences, Structural Biology Brussels, International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel, Brussels, Belgium

2. Department of Electronics and Informatics (ETRO), AVSP Lab, International Joint Research Group VUB-EPFL BioNanotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, Brussels, Belgium

3. Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium

4. Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium

Abstract

ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. IMPORTANCE Microbial pathogens may express a wide range of carbohydrate-specific adhesion proteins that mediate adherence to host tissues. Pathogen attachment to host cells is achieved through the binding of these lectin-like adhesins to glycans on human glycoproteins. In only a few cases have the human receptors of pathogenic adhesins been described. We developed a new strategy to predict these interacting receptors. Therefore, we developed a novel LGI network that would allow the mapping of potential adhesin binding receptors in the host with prioritization, based on the experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins (bacterial uroepithelial FimH from E. coli and fungal Epa and Als adhesins from C. glabrata and C. albicans ) were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with human-pathogenic viruses and to discover whether FimH adhesin has anti-HIV activity.

Funder

Federaal Wetenschapsbeleid - European Space Agency

Federal Wetenschapsbeleid - European Space Agency

KU Leuven

Agentschap voor Innovatie door Wetenschap en Technologie

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3