A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland

Author:

Zalewska Magdalena1ORCID,Błażejewska Aleksandra1,Gawor Jan2,Adamska Dorota3,Goryca Krzysztof3,Szeląg Michał3,Kalinowski Patryk1,Popowska Magdalena1ORCID

Affiliation:

1. Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland

2. DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

3. Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland

Abstract

ABSTRACT Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A ), aph family aminoglycoside resistance genes aph(3 ″) -lb and aph (6)-ld , beta-lactam resistance genes bla TEM-1 and bla CTX-M-15 , sulfonamide resistance gene sul2 , fluoroquinolone resistance gene qnrS1 , and the trimethoprim resistance gene dfrA14 . The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae . While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa . It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria.

Funder

National Science Centre, Poland

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3