Cecal microbiota and mammary gland microRNA signatures are related and modifiable by dietary flaxseed with implications for breast cancer risk

Author:

Wu Diana1ORCID,Thompson Lilian U.1,Comelli Elena M.12ORCID

Affiliation:

1. Department of Nutritional Sciences, University of Toronto, Faculty of Medicine , Toronto, Canada

2. Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto , Toronto, Canada

Abstract

ABSTRACT The gut microbial ecosystem underlies physiological relationships between the gut and distal organs. Mechanisms remain elusive but rely at least partially on the production of a diverse set of absorbable metabolites and host gene expression regulation. Here we show that in female mice, gut cecal microbiota profiles are related to microRNAs (miRNAs) expressed in the mammary gland. A subset of these miRNAs were found to regulate genes involved in breast cancer-related processes, such as cell proliferation and migration. To determine if these relationships could be exploited toward the reduction of breast cancer risk, we studied if they are modifiable by dietary flaxseed (FS), a source of lignan secoisolariciresinol diglucoside (SDG) and alpha-linolenic acid (ALA)-rich oil (FSO), both with antitumor effects. Importantly, SDG, but not ALA, needs microbial processing to release bioactive metabolites. We found that the microbiota and mammary gland miRNA are related, and FS modifies these relationships toward an antioncogenic phenotype. FSO- and SDG-related miRNAs were found to be involved in different pathways and neither FSO nor SDG alone could recapitulate the effects of whole FS, affecting unique pathways related to extracellular matrix processing. These findings highlight the existence of inter-organ microbiota-miRNA relationships, show that dietary interventions interact to affect them, and suggest a novel route for breast cancer prevention. IMPORTANCE Breast cancer is a leading cause of cancer mortality worldwide. There is a growing interest in using dietary approaches, including flaxseed (FS) and its oil and lignan components, to mitigate breast cancer risk. Importantly, there is recognition that pubertal processes and lifestyle, including diet, are important for breast health throughout life. Mechanisms remain incompletely understood. Our research uncovers a link between mammary gland miRNA expression and the gut microbiota in young female mice. We found that this relationship is modifiable via a dietary intervention. Using data from The Cancer Genome Atlas, we also show that the expression of miRNAs involved in these relationships is altered in breast cancer in humans. These findings highlight a role for the gut microbiome as a modulator, and thus a target, of interventions aiming at reducing breast cancer risk. They also provide foundational knowledge to explore the effects of early life interventions and mechanisms programming breast health.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3