Sphingomonas clade and functional distribution with simulated climate change

Author:

Sorouri Bahareh12ORCID,Scales Nicholas C.1ORCID,Gaut Brandon S.1ORCID,Allison Steven D.13ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA

2. Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA

3. Department of Earth System Science, University of California, Irvine, California, USA

Abstract

ABSTRACT Microbes are essential for the functioning of all ecosystems, and as global warming and anthropogenic pollution threaten ecosystems, it is critical to understand how microbes respond to these changes. We investigated the climate response of Sphingomonas , a widespread gram-negative bacterial genus, during an 18-month microbial community reciprocal transplant experiment across a Southern California climate gradient. We hypothesized that after 18 months, the transplanted Sphingomonas clade and functional composition would correspond with site conditions and reflect the Sphingomonas composition of native communities. We extracted Sphingomonas sequences from metagenomic data across the gradient and assessed their clade and functional composition. Representatives of at least 12 major Sphingomonas clades were found at varying relative abundances along the climate gradient, and transplanted Sphingomonas clade composition shifted after 18 months. Site had a significant effect (PERMANOVA; P < 0.001) on the distribution of both Sphingomonas functional (R 2 = 0.465) and clade composition (R 2 = 0.400), suggesting that Sphingomonas composition depends on climate parameters. Additionally, for both Sphingomonas clade and functional composition, ordinations revealed that the transplanted communities shifted closer to the native Sphingomonas composition of the grassland site compared with the site they were transplanted into. Overall, our results indicate that climate and substrate collectively determine Sphingomonas clade and functional composition. IMPORTANCE Sphingomonas is the most abundant gram-negative bacterial genus in litter-degrading microbial communities of desert, grassland, shrubland, and forest ecosystems in Southern California. We aimed to determine whether Sphingomonas responds to climate change in the same way as gram-positive bacteria and whole bacterial communities in these ecosystems. Within Sphingomonas , both clade composition and functional genes shifted in response to climate and litter chemistry, supporting the idea that bacteria respond similarly to climate at different scales of genetic variation. This understanding of how microbes respond to perturbation across scales may aid in future predictions of microbial responses to climate change.

Funder

National Science Foundation

US Department of Energy, Office of Science, Biological and Environmental Research

National Science Foundation Postdoctoral Research Fellowship in Biology

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3