MicroMPN: methods and software for high-throughput screening of microbe suppression in mixed populations

Author:

Franco Meléndez Karla1ORCID,Schuster Layla2,Donahey Melinda Chue2ORCID,Kairalla Emily2,Jansen M. Andrew3,Reisch Christopher2,Rivers Adam R.1ORCID

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA

2. Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA

3. United States Department of Agriculture, Agricultural Research Service, Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville, Maryland, USA

Abstract

ABSTRACT Screening assays are used to test if one or more microbes suppress a pathogen of interest. In the presence of more than one microbe, the screening method must be able to accurately distinguish viable pathogen cells from non-viable and non-target microbes in a sample. Current screening methods are time-consuming and require special reagents to detect viability in mixed microbial communities. Screening assays performed using soil or other complex matrices present additional challenges for screening. Here, we develop an experimental workflow based on the most probable number (MPN) assay for testing the ability of synthetic microbial communities to suppress a soil-borne pathogen. Our approach, fluorMPN, uses a fluorescently labeled pathogen and microplate format to enable high-throughput comparative screening. In parallel, we developed a command-line tool, MicroMPN, which significantly reduces the complexity of calculating MPN values from microplates. We compared the performance of the fluorMPN assay with spotting on agar and found that both methods produced strongly correlated counts of equal precision. The suppressive effect of synthetic communities on the pathogen was equally recoverable by both methods. The application of this workflow for discriminating which communities lead to pathogen reduction helps narrow down candidates for additional characterization. Together, the resources offered here are meant to facilitate and simplify the application of MPN-based assays for comparative screening projects. IMPORTANCE We created a unified set of software and laboratory protocols for screening microbe libraries to assess the suppression of a pathogen in a mixed microbial community. Existing methods of fluorescent labeling were combined with the most probable number (MPN) assay in a microplate format to enumerate the reduction of a pathogenic soil microbe from complex soil matrices. This work provides a fluorescent expression vector available from Addgene, step-by-step laboratory protocols hosted by protocols.io, and MicroMPN, a command-line software for processing plate reader outputs. MicroMPN simplifies MPN estimation from 96- and 384-well microplates. The microplate screening assay is amenable to robotic automation with standard liquid handling robots, further reducing the hands-on processing time. This tool was designed to evaluate synthetic microbial communities for use as microbial inoculates or probiotics. The fluorMPN method is also useful for screening chemical and antimicrobial libraries for pathogen suppression in complex bacterial communities like soil.

Funder

USDA | Agricultural Research Service

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3