A novel member of drug/metabolite transporter (DMT) family efflux pump, SA00565, contributes to tetracycline antibiotics resistance in Staphylococcus aureus USA300

Author:

Li Daiyu1,Ge Yan1,Wang Ning1,Shi Yun1,Guo Gang1,Zhang Jing1,Zou Quanming2,Liu Qiang1ORCID

Affiliation:

1. West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China

2. Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China

Abstract

ABSTRACT Drug efflux systems have recently been recognized as a significant mechanism responsible for multidrug resistance in bacteria. In this study, we described the identification and characterization of a new chromosomally encoded efflux pump (SA00565) in Staphylococcus aureus . SA00565, which belongs to the drug/metabolite transporter (DMT) superfamily, was predicted to be a 10-transmembrane segment transporter. To evaluate the role of sa00565 in resistance, we generated sa00565 gene deletion mutant (Δ sa00565 ) and assessed its susceptibility to 35 different antibiotic treatments. Our results demonstrated that the Δ sa00565 mutant exhibited reduced resistance to tetracycline and doxycycline, with 64-fold and 12-fold decreased MICs, respectively. The mechanism of SA00565-mediated tetracycline resistance was demonstrated that SA00565 possesses the capability to efficiently extrud intracellular tetracycline into the environment. The efflux activity of SA00565 was further validated using EtBr accumulation and efflux assays. In summary, our study uncovered a previously unknown function of a DMT family transporter, which serves as a tetracycline efflux pump, thereby contributing to tetracycline resistance in S. aureus . IMPORTANCE In this study, we addressed the significance of drug efflux systems in multidrug resistance of Staphylococcus aureus , focusing on the unexplored efflux pump SA00565 in the drug/metabolite transporter (DMT) superfamily. Through phylogenetic analysis, gene knockout, and overexpression experiments, we identified the role of SA00565 in antibiotic resistance. The Δ sa00565 mutant showed increased susceptibility to tetracycline and doxycycline in disk diffusion assays, with significantly lower MICs compared to the WT. Remarkably, intracellular tetracycline concentration in the mutant was two- to threefold higher, indicating SA00565 actively eliminates intracellular tetracycline. Our findings emphasize the pivotal contribution of SA00565 to tetracycline antibiotic resistance in S. aureus , shedding light on its functional attributes within the DMT superfamily and providing valuable insights for combating multidrug resistance.

Funder

SPDST | Basic Research Programs of Sichuan Province

MOST | NSFC | China National Funds for Distinguished Young Scientists

SCU | West China Hospital, Sichuan University

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3