Affiliation:
1. College of Animal Science, Guizhou University, Guiyang, China
2. Institute of Animal Diseases, Guizhou University, Guiyang, China
3. Engineering Research Center of Animal Biological Products, Guiyang, China
Abstract
ABSTRACT
Cellulolytic bacteria ferment dietary fiber into short-chain fatty acids, which play an important role in improving fiber utilization and maintaining intestinal health. Safe and effective cellulolytic bacteria are highly promising probiotic candidates. In this study, we isolated three strains of
Bacillus cereus,
which exhibited cellulolytic properties, from Kele pig feces. To assess the genetic basis of cellulose degradation by the isolates, whole-genome sequencing was used to detect functional genes associated with cellulose metabolism. Subsequently, we identified that the
B. cereus
CL2 strain was safe in mice by monitoring body weight changes, performing histopathologic evaluations, and determining routine blood indices. We next evaluated the biological characteristics of the CL2 strain in terms of its growth, tolerance, and antibiotic susceptibility, with a focus on its ability to produce short-chain fatty acids. Finally, the intestinal flora structure of the experimental animals was analyzed to assess the intestinal environment compatibility of the CL2 strain. In this study, we isolated a cellulolytic
B. cereus
CL2, which has multiple cellulolytic functional genes and favorable biological characteristics, from the feces of Kele pigs. Moreover, CL2 could produce a variety of short-chain fatty acids and does not significantly affect the diversity of the intestinal flora. In summary, the cellulolytic bacterium
B. cereus
CL2 is a promising strain for use as a commercial probiotic or in feed supplement.
IMPORTANCE
Short-chain fatty acids are crucial constituents of the intestinal tract, playing an important and beneficial role in preserving the functional integrity of the intestinal barrier and modulating both immune responses and the structure of the intestinal flora. In the intestine, short-chain fatty acids are mainly produced by bacterial fermentation of cellulose. Therefore, we believe that safe and efficient cellulolytic bacteria have the potential to be novel probiotics. In this study, we systematically evaluated the safety and biological characteristics of the cellulolytic bacterium
B. cereus
CL2 and provide evidence for its use as a probiotic.
Funder
Guizhou Provincial Science and Technology Department
Publisher
American Society for Microbiology