White-nose syndrome restructures bat skin microbiomes

Author:

Ange-Stark Meghan1ORCID,Parise Katy L.12,Cheng Tina L.34,Hoyt Joseph R.5,Langwig Kate E.5ORCID,Frick Winifred F.34,Kilpatrick A. Marm3,Gillece John2,MacManes Matthew D.1,Foster Jeffrey T.12ORCID

Affiliation:

1. Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire , Durham, New Hampshire, USA

2. Pathogen and Microbiome Institute, Northern Arizona University , Flagstaff, Arizona, USA

3. Department of Ecology and Evolutionary Biology, University of California , Santa Cruz, California, USA

4. Bat Conservation International , Austin, Texas, USA

5. Department of Biological Sciences, Virginia Tech , Blacksburg, Virginia, USA

Abstract

ABSTRACT The skin microbiome is an essential line of host defense against pathogens, yet our understanding of microbial communities and how they change when hosts become infected is limited. We investigated skin microbial composition in three North American bat species ( Myotis lucifugus , Eptesicus fuscus , and Perimyotis subflavus ) that have been impacted by the infectious disease, white-nose syndrome, caused by an invasive fungal pathogen, Pseudogymnoascus destructans . We compared bacterial and fungal composition from 154 skin swab samples and 70 environmental samples using a targeted 16S rRNA and internal transcribed spacer amplicon approach. We found that for M. lucifugus , a species that experiences high mortality from white-nose syndrome, bacterial microbiome diversity was dramatically lower when P. destructans was present. Key bacterial families—including those potentially involved in pathogen defense—significantly differed in abundance in bats infected with P. destructans compared to uninfected bats. However, skin bacterial diversity was not lower in E. fuscus or P. subflavus when P. destructans was present despite populations of the latter species declining sharply from white-nose syndrome. The fungal species present on bats substantially overlapped with the fungal taxa present in the environment at the site where the bat was sampled, but fungal community composition was unaffected by the presence of P. destructans for any of the three bat species. This species-specific alteration in bat skin bacterial microbiomes after pathogen invasion may suggest a mechanism for the severity of white-nose syndrome in M. lucifugus but not for other bat species impacted by the disease. IMPORTANCE Inherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes of Myotis lucifugus and Perimyotis subflavus indicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3