Blocking Yersiniabactin Import Attenuates Extraintestinal Pathogenic Escherichia coli in Cystitis and Pyelonephritis and Represents a Novel Target To Prevent Urinary Tract Infection

Author:

Brumbaugh Ariel R.1,Smith Sara N.1,Subashchandrabose Sargurunathan1,Himpsl Stephanie D.1,Hazen Tracy H.2,Rasko David A.2,Mobley Harry L. T.1

Affiliation:

1. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

2. Department of Microbiology and Immunology, Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, Maryland, USA

Abstract

ABSTRACT The emergence and spread of extended-spectrum beta-lactamases and carbapenemases among common bacterial pathogens are threatening our ability to treat routine hospital- and community-acquired infections. With the pipeline for new antibiotics virtually empty, there is an urgent need to develop novel therapeutics. Bacteria require iron to establish infection, and specialized pathogen-associated iron acquisition systems like yersiniabactin, common among pathogenic species in the family Enterobacteriaceae , including multidrug-resistant Klebsiella pneumoniae and pathogenic Escherichia coli , represent potentially novel therapeutic targets. Although the yersiniabactin system was recently identified as a vaccine target for uropathogenic E. coli (UPEC)-mediated urinary tract infection (UTI), its contribution to UPEC pathogenesis is unknown. Using an E. coli mutant (strain 536Δ fyuA ) unable to acquire yersiniabactin during infection, we established the yersiniabactin receptor as a UPEC virulence factor during cystitis and pyelonephritis, a fitness factor during bacteremia, and a surface-accessible target of the experimental FyuA vaccine. In addition, we determined through transcriptome sequencing (RNA-seq) analyses of RNA from E. coli causing cystitis in women that iron acquisition systems, including the yersiniabactin system, are highly expressed by bacteria during natural uncomplicated UTI. Given that yersiniabactin contributes to the virulence of several pathogenic species in the family Enterobacteriaceae , including UPEC, and is frequently associated with multidrug-resistant strains, it represents a promising novel target to combat antibiotic-resistant infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3