Diminished Human Immunodeficiency Virus Type 1 Reverse Transcription and Nuclear Transport in Primary Macrophages Arrested in Early G 1 Phase of the Cell Cycle

Author:

Kootstra Neeltje A.1,Zwart Bianca M.1,Schuitemaker Hanneke1

Affiliation:

1. Department of Clinical Viral-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, and Laboratory for Experimental and Clinical Immunology, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands

Abstract

ABSTRACT Previously, we and others have demonstrated that the process of reverse transcription of human immunodeficiency virus type 1 (HIV-1) is disturbed in nondividing macrophages and quiescent T lymphocytes. Here we analyzed which phase of the cell cycle in macrophages is crucial for early steps in the HIV-1 replication cycle. HIV-1 Ba-L-inoculated macrophages arrested early in the G 1 phase by n -butyrate contained incomplete products of reverse transcription. In gamma-irradiated macrophages, reverse transcription was successfully completed but proviral integration could not be detected. In these cells, nuclear import was disturbed as reflected by the absence of two-long-terminal-repeat circles. In macrophages arrested late in G 1 phase by aphidicolin or 5,6-dichloro-1-β- d -ribofuranosyl-benzimidazole (DRB), reverse transcription was unaffected. Proviral integration occurred efficiently in DRB-treated macrophages, whereas integrated proviral DNA could not be detected after aphidicolin treatment. Arrest at G 2 phase of the cell cycle by nocodazole did not affect reverse transcription or proviral integration. Treatment of macrophages with hydroxyurea (HU), which reduces the intracellular deoxynucleoside triphosphate (dNTP) pool by blocking the de novo synthesis of dNTP, resulted in a dose-dependent inhibition of HIV-1 reverse transcription. This could partially be restored by the addition of nucleoside precursors. Addition of nucleoside precursors enhanced both reverse transcription and cell proliferation. However, the disturbed reverse transcription observed in the nonproliferating and n -butyrate-treated macrophages could not be restored by addition of nucleoside precursors. Similar to observations in quiescent T lymphocytes, incomplete proviral DNA species were arrested in the cytoplasm of the macrophages. Our results indicate that also in primary macrophages the intracellular nucleotide pools and other cellular factors that coincide with late G 1 phase of the cell cycle may contribute to efficient reverse transcription and nuclear localization.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3