Author:
Behnke Michael S.,Khan Asis,Sibley L. David
Abstract
ABSTRACTQuantitative trait locus (QTL) mapping studies have been integral in identifying and understanding virulence mechanisms in the parasiteToxoplasma gondii. In this study, we interrogated a different phenotype by mapping sinefungin (SNF) resistance in the genetic cross between type 2 ME49-FUDRrand type 10 VAND-SNFr. The genetic map of this cross was generated by whole-genome sequencing of the progeny and subsequent identification of single nucleotide polymorphisms (SNPs) inherited from the parents. Based on this high-density genetic map, we were able to pinpoint the sinefungin resistance phenotype to one significant locus on chromosome IX. Within this locus, a single nonsynonymous SNP (nsSNP) resulting in an early stop codon in the TGVAND_290860 gene was identified, occurring only in the sinefungin-resistant progeny. Using CRISPR/CAS9, we were able to confirm that targeted disruption of TGVAND_290860 renders parasites sinefungin resistant. Because disruption of theSNR1gene confers resistance, we also show that it can be used as a negative selectable marker to insert either a positive drug selection cassette or a heterologous reporter. These data demonstrate the power of combining classical genetic mapping, whole-genome sequencing, and CRISPR-mediated gene disruption for combined forward and reverse genetic strategies inT. gondii.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Reference39 articles.
1. Waterborne toxoplasmosis—recent developments;Exp Parasitol,2010
2. Foodborne toxoplasmosis;Clin Infect Dis,2012
3. Toxoplasmosis;Lancet,2004
4. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii;Methods Cell Biol,1994
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献