Interactions of β-Lactamases with Sanfetrinem (GV 104326) Compared to Those with Imipenem and with Oral β-Lactams

Author:

Babini Gioia S.1,Yuan Meifang1,Livermore David M.1

Affiliation:

1. Antibiotic Group, St Bartholomew’s and the Royal London School of Medicine and Dentistry, London E1 2AD, United Kingdom

Abstract

ABSTRACT Sanfetrinem is a trinem β-lactam which can be administered orally as a hexatil ester. We examined whether its β-lactamase interactions resembled those of the available carbapenems, i.e., stable to AmpC and extended-spectrum β-lactamases but labile to class B and functional group 2f enzymes. The comparator drugs were imipenem, oral cephalosporins, and amoxicillin. MICs were determined for β-lactamase expression variants, and hydrolysis was examined directly with representative enzymes. Sanfetrinem was a weak inducer of AmpC β-lactamases below the MIC and had slight lability, with a k cat of 0.00033 s −1 for the Enterobacter cloacae enzyme. Its MICs for AmpC-derepressed E. cloacae and Citrobacter freundii were 4 to 8 μg/ml, compared with MICs of 0.12 to 2 μg/ml for AmpC-inducible and -basal strains; MICs for AmpC-derepressed Serratia marcescens and Morganella morganii were not raised. Cefixime and cefpodoxime were more labile than sanfetrinem to the E. cloacae AmpC enzyme, and AmpC-derepressed mutants showed much greater resistance; imipenem was more stable and retained full activity against derepressed mutants. Like imipenem, sanfetrinem was stable to TEM-1 and TEM-10 enzymes and retained full activity against isolates and transconjugants with various extended-spectrum TEM and SHV enzymes, whereas these organisms were resistant to cefixime and cefpodoxime. Sanfetrinem, like imipenem and cefixime but unlike cefpodoxime, also retained activity against Proteus vulgaris and Klebsiella oxytoca strains that hyperproduced potent chromosomal class A β-lactamases. Functional group 2f enzymes, including Sme-1, NMC-A, and an unnamed enzyme from Acinetobacter spp., increased the sanfetrinem MICs by up to 64-fold. These enzymes also compromised the activities of imipenem and amoxicillin but not those of the cephalosporins. The hydrolysis of sanfetrinem was examined with a purified Sme-1 enzyme, and biphasic kinetics were found. Finally, zinc β-lactamases, including IMP-1 and the L1 enzyme of Stenotrophomonas maltophilia , conferred resistance to sanfetrinem and all other β-lactams tested, and hydrolysis was confirmed with the IMP-1 enzyme. We conclude that sanfetrinem has β-lactamase interactions similar to those of the available carbapenems except that it is a weaker inducer of AmpC types, with some tendency to select derepressed mutants, unlike imipenem and meropenem.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3