Author:
Holbrook Eric D.,Smolnycki Katherine A.,Youseff Brian H.,Rappleye Chad A.
Abstract
ABSTRACTHistoplasma capsulatumis a respiratory pathogen that infects phagocytic cells. The mechanisms allowingHistoplasmato overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part ofHistoplasma's ability to survive during infection. To probe the contribution ofHistoplasmacatalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protectedHistoplasmafrom peroxide challengein vitroand from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defensesin vitro, CatB was dispensable for lung infection and extrapulmonary disseminationin vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival ofHistoplasmayeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuatedHistoplasmavirulencein vivo. These results demonstrate thatHistoplasma's dual catalases comprise a system that enablesHistoplasmato efficiently overcome the reactive oxygen produced by the innate immune system.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献