Histone H2A.X gene transcription is regulated differently than transcription of other replication-linked histone genes.

Author:

Bonner W M,Mannironi C,Orr A,Pilch D R,Hatch C L

Abstract

Histone H2A.X is a replication-independent histone H2A isoprotein species that is encoded by a transcript alternatively processed at the 3' end to yield two mRNAs: a 0.6-kb mRNA ending with the stem-loop structure characteristic of the mRNAs for replication-linked histone species, and a second, polyadenylated 1.6-kb mRNA ending about 1 kb further downstream (C. Mannironi, W. M. Bonner, and C. L. Hatch, Nucleic Acids Res. 17:9113-9126, 1989). Of the two, the 0.6-kb H2A.X stem-loop mRNA predominates in many cell lines, indicating that the presence of two types of mRNA may not completely account for the replication independence of H2A.X protein synthesis. The ambiguity is resolved by the finding that the level of the 0.6-kb H2A.X mRNA is only weakly downregulated during the inhibition of DNA replication and only weakly upregulated during the inhibition of protein synthesis, while the levels of other replication-linked mRNAs are strongly down- or upregulated under these two conditions. Analysis of the nuclear transcription rates of specific H2A genes showed that while the rates of transcription of replication-linked H2A genes decreased substantially during the inhibition of DNA synthesis and increased substantially during the inhibition of protein synthesis, the rate of H2A.X gene transcription decreased slightly under both conditions. These differences in transcriptional regulation between the H2A.X gene and other replication-linked histone genes are sufficient to account for the differences in regulation of their respective stem-loop mRNAs.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3