High-Throughput Analysis of Gene Essentiality and Sporulation in Clostridium difficile

Author:

Dembek Marcin12,Barquist Lars3,Boinett Christine J.4,Cain Amy K.4,Mayho Matthew4,Lawley Trevor D.4,Fairweather Neil F.1,Fagan Robert P.5

Affiliation:

1. MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom

2. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

3. Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany

4. Wellcome Trust Sanger Institute, Hinxton, United Kingdom

5. Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

Abstract

ABSTRACT Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro . We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen. IMPORTANCE Clostridium difficile is a common cause of potentially fatal intestinal infections in hospital patients, particularly those who have been treated with antibiotics. Our knowledge of this bacterium has been hampered by a lack of tools for dissecting the organism. We have developed a method to study the function of every gene in the bacterium simultaneously. Using this tool, we have identified a set of 404 genes that are required for growth of the bacteria in the laboratory. C. difficile also produces a highly resistant spore that can survive in the environment for a long time and is a requirement for transmission of the bacteria between patients. We have applied our genetic tool to identify all of the genes required for production of a spore. All of these genes represent attractive targets for new drugs to treat infection.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3