Characterization of the Preclinical Pharmacology of the New 2-Aminomethylphenol, JPC-3210, for Malaria Treatment and Prevention

Author:

Birrell Geoffrey W.1,Heffernan Gavin D.2,Schiehser Guy A.2,Anderson John2,Ager Arba L.3,Morales Pablo4,MacKenzie Donna1,van Breda Karin1,Chavchich Marina1,Jacobus Laura R.2,Shanks G. Dennis1,Jacobus David P.2,Edstein Michael D.1

Affiliation:

1. Department of Drug Evaluation, Australian Army Malaria Institute (AMI), Brisbane, Queensland, Australia

2. Jacobus Pharmaceutical Company, Princeton, New Jersey, USA

3. University of Miami, Miami, Florida, USA

4. Mannheimer Foundation, Inc., Homestead, Florida, USA

Abstract

ABSTRACT The new 2-aminomethylphenol, JPC-3210, has potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, and high in vivo efficacy against murine malaria. Here we report on the pharmacokinetics of JPC-3210 in mice and monkeys and the results of in vitro screening assays, including the inhibition of cytochrome P450 (CYP450) isozymes. In mice, JPC-3210 was rapidly absorbed and had an extensive tissue distribution, with a brain tissue-to-plasma concentration ratio of about 5.4. JPC-3210 had a lengthy plasma elimination half-life of about 4.5 days in mice and 11.8 days in monkeys. JPC-3210 exhibited linear single-oral-dose pharmacokinetics across the dose range of 5 to 40 mg/kg of body weight with high oral bioavailability (∼86%) in mice. Systemic blood exposure of JPC-3210 was 16.6% higher in P. berghei -infected mice than in healthy mice. In vitro studies with mice and human hepatocytes revealed little metabolism and the high metabolic stability of JPC-3210. The abundance of human metabolites from oxidation and glucuronidation was 2.0% and 2.5%, respectively. CYP450 studies in human liver microsomes showed JPC-3210 to be an inhibitor of CYP2D6 and, to a lesser extent, CYP3A4 isozymes, suggesting the possibility of a metabolic drug-drug interaction with drugs that are metabolized by these isozymes. In vitro studies showed that JPC-3210 is highly protein bound to human plasma (97%). These desirable pharmacological findings of a lengthy blood elimination half-life, high oral bioavailability, and low metabolism as well as high in vivo potency have led the Medicines for Malaria Venture to select JPC-3210 (MMV892646) for further advanced preclinical development.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3