Abstract
The specific activities of three murein hydrolases, carboxypeptidase I, carboxypeptidase II, and amidase were studied with respect to cell division in toluene-treated cells of Escherichia coli K-12. Carboxypeptidase I and amidase activities were constant throughout the division cycle in cells of D11/lac+pro+. Detectable carboxypeptidase II activity varied and was highest at the time of division by a factor of three. Carboxypeptidase II specific activity was also correlated with cell division in BUG 6, a temperature-sensitive mutant (J.N Reeve, D.J. Groves, and D.J. Clark, 1970). Fifteen minutes after shifting BUG 6 from 42 C (nondividing conditions) to 32 C (dividing conditions), there was a rapid resumption of cell division, accompanied by a 10-fold increase in the specific activity of carboxypeptidase II. These results demonstrate a correlation between detectable carboxypeptidase II activity and cell division as reflected by activity in toluene-treated cells. The subcellular location of carboxypeptidase II, a soluble enzyme was found to be periplasmic since it was released by tris(hydroxymethyl)-aminomethane-ethylenediaminetetraacetate treatment and osmotic shock, two methods known to release periplasmic enzymes.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献