2C Proteins of Enteroviruses Suppress IKKβ Phosphorylation by Recruiting Protein Phosphatase 1

Author:

Li Qian1,Zheng Zhenhua1,Liu Yan1,Zhang Zhenfeng1,Liu Qingshi1,Meng Jin1,Ke Xianliang1,Hu Qinxue2,Wang Hanzhong1

Affiliation:

1. Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

2. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

Abstract

ABSTRACT The NF-κB signaling network, which is an ancient signaling pathway, plays a pivotal role in innate immunity and constitutes a first line of defense against invading pathogens, including viruses. However, numerous viruses possess evolved strategies to antagonize the activation of the NF-κB signaling pathway. Our previous study demonstrated that the nonstructural protein 2C of enterovirus 71 (EV71), which is the major pathogen of hand, foot, and mouth disease, inhibits tumor necrosis factor alpha (TNF-α)-mediated activation of NF-κB by suppressing IκB kinase β (IKKβ) phosphorylation. Nevertheless, the mechanism underlying the inhibition of IKKβ phosphorylation by EV71 2C remains largely elusive. We demonstrate that EV71 2C interacts with all isoforms of the protein phosphatase 1 (PP1) catalytic subunit (the PP1α, PP1β, and PP1γ isoforms) through PP1-docking motifs. EV71 2C has no influence on the subcellular localization of PP1. In addition, the PP1-binding-deficient EV71 2C mutant 3E3L nearly completely lost the ability to suppress IKKβ phosphorylation and NF-κB activation was markedly restored in the mutant, thereby indicating that PP1 binding is efficient for EV71 2C-mediated inhibition of IKKβ phosphorylation and NF-κB activation. We further demonstrate that 2C forms a complex with PP1 and IKKβ to dephosphorylate IKKβ. Notably, we reveal that other human enteroviruses, including poliovirus (PV), coxsackie A virus 16 (CVA16), and coxsackie B virus 3 (CVB3), use 2C proteins to recruit PP1, leading to the inhibition of IKKβ phosphorylation. Our findings indicate that enteroviruses exploit a novel mechanism to inhibit IKKβ phosphorylation by recruiting PP1 and IKKβ to form a complex through 2C proteins, which ultimately results in the inhibition of the NF-κB signaling pathway. IMPORTANCE The innate antiviral immunity system performs an essential function in recognizing and eliminating invading viruses. Enteroviruses include a number of important human pathogens, including poliovirus (PV), EV71, and coxsackieviruses (CVs). As 2C is the most conserved and complex nonstructural protein of enteroviruses, its biological function is largely unclear, whereas the 2A and 3C proteinases of enteroviruses are well characterized. We reveal that EV71 2C forms a complex with PP1 and IKKβ to maintain IKKβ in an unphosphorylated and inactive state, resulting in the inactivation of the TNF-α-mediated NF-κB signaling pathway. We provide evidence that the 2C proteins of the enteroviruses PV, CVA16, and CVB3 suppress IKKβ phosphorylation through the same mechanism involving PP1. We demonstrate that enteroviruses exploit a novel mechanism involving PP1 to regulate innate antiviral immunity, and our findings may be particularly important for understanding the pathogenicity of enteroviruses.

Funder

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3