Mutations in Hepatitis C Virus RNAs Conferring Cell Culture Adaptation

Author:

Lohmann Volker1,Körner Frank1,Dobierzewska Aneta1,Bartenschlager Ralf1

Affiliation:

1. Institute for Virology, Johannes Gutenberg University Mainz, 55131 Mainz, Germany

Abstract

ABSTRACT As an initial approach to studying the molecular replication mechanisms of hepatitis C virus (HCV), a major causative agent of acute and chronic liver disease, we have recently developed selectable self-replicating RNAs. These replicons lacked the region encoding the structural proteins and instead carried the gene encoding the neomycin phosphotransferase. Although the replication levels of these RNAs within selected cells were high, the number of G418-resistant colonies was reproducibly low. In a search for the reason, we performed a detailed analysis of replicating HCV RNAs and identified several adaptive mutations enhancing the efficiency of colony formation by several orders of magnitude. Adaptive mutations were found in nearly every nonstructural protein but not in the 5′ or 3′ nontranslated regions. The most drastic effect was found with a single-amino-acid substitution in NS5B, increasing the number of colonies ∼500-fold. This mutation was conserved with RNAs isolated from one cell line, in contrast to other amino acid substitutions enhancing the efficiency of colony formation to a much lesser extent. Interestingly, some combinations of these nonconserved mutations with the highly adaptive one reduced the efficiency of colony formation drastically, suggesting that some adaptive mutations are not compatible.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference63 articles.

1. The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation

2. Ausubel F. M. Brent R. Kingston R. E. Moore D. D. Seidman J. G. Smith J. A. Struhl K. Current protocols in molecular biology 1987 John Wiley and Sons New York N.Y

3. Kinetic and structural analyses of hepatitis C virus polyprotein processing

4. Replication of hepatitis C virus;Bartenschlager R.;J. Gen. Virol.,2000

5. An infectious molecular clone of a Japanese genotype 1b hepatitis C virus;Beard M. R.;Hepatology,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3