Glycolytic Breakdown of Sulfoquinovose in Bacteria: a Missing Link in the Sulfur Cycle

Author:

Roy Alexander B.1,Hewlins Michael J. E.2,Ellis Andrew J.1,Harwood John L.1,White Graham F.1

Affiliation:

1. School of Biosciences

2. School of Chemistry, Cardiff University, Cardiff CF10 3US, United Kingdom

Abstract

ABSTRACT Sulfoquinovose (6-deoxy-6-sulfo- d -glucopyranose), formed by the hydrolysis of the plant sulfolipid, is a major component of the biological sulfur cycle. However, pathways for its catabolism are poorly delineated. We examined the hypothesis that mineralization of sulfoquinovose to inorganic sulfate is initiated by reactions of the glycolytic and/or Entner-Doudoroff pathways in bacteria. Metabolites of [U- 13 C]sulfoquinovose were identified by 13 C-nuclear magnetic resonance (NMR) in strains of Klebsiella and Agrobacterium previously isolated for their ability to utilize sulfoquinovose as a sole source of carbon and energy for growth, and cell extracts were analyzed for enzymes diagnostic for the respective pathways. Klebsiella sp. strain ABR11 grew rapidly on sulfoquinovose, with major accumulations of sulfopropandiol (2,3-dihydroxypropanesulfonate) but no detectable release of sulfate. Later, when sulfoquinovose was exhausted and growth was very slow, sulfopropandiol disappeared and inorganic sulfate and small amounts of sulfolactate (2-hydroxy-3-sulfopropionate) were formed. In Agrobacterium sp. strain ABR2, growth and sulfoquinovose disappearance were again coincident, though slower than that in Klebsiella sp. Release of sulfate was still late but was faster than that in Klebsiella sp., and no metabolites were detected by 13 C-NMR. Extracts of both strains grown on sulfoquinovose contained phosphofructokinase activities that remained unchanged when fructose 6-phosphate was replaced in the assay mixture with either glucose 6-phosphate or sulfoquinovose. The results were consistent with the operation of the Embden-Meyerhoff-Parnas (glycolysis) pathway for catabolism of sulfoquinovose. Extracts of Klebsiella but not Agrobacterium also contained an NAD + -dependent sulfoquinovose dehydrogenase activity, indicating that the Entner-Doudoroff pathway might also contribute to catabolism of sulfoquinovose.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3