Autolytic Enzyme System of Streptococcus faecalis IV. Electron Microscopic Observations of Autolysin and Lysozyme Action

Author:

Shockman Gerald D.1,Martin Joseph T.1

Affiliation:

1. Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140

Abstract

Cell walls (LOG walls) were isolated from cultures of Streptococcus faecalis ATCC 9790 in the exponential phase of growth. These walls were either allowed to undergo autolytic dissolution (in the presence or absence of trypsin) or wall autolysis was inactivated with sodium dodecylsulfate (SDS walls). Inactivated walls were treated either with lysozyme or with isolated, partially purified S. faecalis autolysin. During wall lysis, samples were removed, negatively stained with phosphotungstate, and examined in the electron microscope. Both lysozyme and isolated autolysin appeared to act over the entire surface of SDS walls. After partial dissolution, a fibrous network over the surface was revealed. Lysozyme digestion revealed the presence of prominent, highly-contrasted equatorial and subequatorial bands around the walls. After trichloroacetic acid extraction, the bands were seen less frequently and less distinctly in the partially lysozyme digested walls, suggesting that the bands contained nonpeptidoglycan polymers. In the absence of trypsin (which activates a latent form of the autolysin), autolysis of LOG walls appeared to start at the equatorial bands and to proceed back towards the apex of the coccus. Ribbons of wall material coming off the wide edge of the nearly hemispherical wall fragments were observed. Activation of latent autolysis resulted in lytic action over the entire wall surface. The results are consistent with the previously postulated location of active autolysin at the areas of new wall synthesis and the random location of latent autolysin in LOG walls.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3