Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP

Author:

Reizer J,Novotny M J,Panos C,Saier M H

Abstract

The mechanism of methyl-beta-D-thiogalactoside-phosphate (TMG-P) expulsion from Streptococcus pyogenes was studied. The expulsion elicited by glucose was not due to exchange vectorial transphosphorylation between the expelled TMG and the incoming glucose since more beta-galactoside was displaced than glucose taken up, and the stoichiometry between TMG and glucose transport was inconstant. Instead, two distinct and sequential reactions, intracellular dephosphorylation of TMG-P followed by efflux of free TMG, mediated the expulsion. This was shown by temporary accumulation of free TMG effected by competitive inhibition of its efflux and by the aid of arsenate, which arrested dephosphorylation of TMG-P but did not affect efflux of free TMG formed intracellularly before arsenate addition. The competitive inhibition of TMG efflux by its structural analogs suggests that a transport protein facilitates the expulsion. Iodoacetate or fluoride prevented TMG-P dephosphorylation and its expulsion. However, provision of ATP via the arginine deiminase pathway restored these activities in the presence of the glycolytic inhibitors and stimulated expulsion in their absence. Other amino acids tested did not promote this restoration, and canavanine or norvaline severely inhibited it. Arginine without glucose neither elicited the dephosphorylation nor evoked the expulsion of TMG-P. Ionophores or ATPase inhibitors did not prevent the expulsion as elicited by glucose or its restoration by arginine. The results suggest that activation of the dephosphorylation-expulsion mechanism occurs independently of a functional glycolytic pathway, requires ATP provision, and is possibly due to protein phosphorylation controlled by a yet unknown metabolite. The in vivo phosphorylation of a protein (approximate molecular weight - 10,000) under the conditions of expulsion was demonstrated.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3