Involvement of p21racA, phosphoinositide 3-kinase, and vacuolar ATPase in phagocytosis of bacteria and erythrocytes by Entamoeba histolytica: suggestive evidence for coincidental evolution of amebic invasiveness

Author:

Ghosh S K1,Samuelson J1

Affiliation:

1. Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

Abstract

Trophozoites of Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, phagocytose bacteria in the colonic lumen and erythrocytes (RBC) in host tissues. Because tissue invasion is an evolutionary dead end, it is likely that amebic pathogenicity is coincidentally selected, i.e., the same methods used to kill bacteria in the colonic lumen are used by parasites to damage host cells and cause disease. In support of this idea, the amebic lectin and pore-forming peptide are involved in binding and killing, respectively, bacteria and host epithelial cells. Here amebic phagocytosis of bacteria, RBC, and mucin-coated beads was disrupted by overexpression of E. histolytica p21(racA-V12), a ras-family protein involved in selection of sites of actin polymerization, which had been mutated to eliminate its GTPase activity. p21(racA-V12) transformants were also defective in capping and cytokinesis, while pinocytosis of fluorescent dextrans was not affected. Wortmannin, a fungal inhibitor of phosphoinositide 3-kinase, markedly inhibited phagocytosis of bacteria, RBC, and mucin-coated beads by wild-type amebae. In contrast to p21(racA-V12) overexpression, wortmannin abolished amebic pinocytosis of dextrans but had no inhibitory effects on capping. Inhibition of amebic vacuolar acidification by bafilomycin also decreased bacterial and RBC uptake. These results, which demonstrate similarities between mechanisms of phagocytosis of bacteria and RBC by amebae and macrophages, support the idea of coincidental selection of amebic genes encoding proteins that mediate destruction of host cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3