Abstract
The amidase from Rhodococcus erythropolis MP50 demonstrated, in the presence of hydroxylamine, acyltransferase activity and catalyzed the formation of hydroxamates from amides and hydroxylamine. The rates of acyltransferase activity of the purified amidase for the substrates acetamide, phenylacetamide, and 2-phenylpropionamide were higher than the corresponding rates for the hydrolysis reactions. With the substrate 2-phenylpropionamide the hydrolysis reaction and the acyltransferase activity were highly enantioselective. The optically active 2-phenylpropionhydroxamate was converted by a chemical Lossen rearrangement in an aqueous medium into the enantiopure S-1-phenylethylamine.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献