Commercial Preparations of Lipoteichoic Acid Contain Endotoxin That Contributes to Activation of Mouse Macrophages In Vitro

Author:

Gao Jian Jun1,Xue Qiao1,Zuvanich Eleanor G.1,Haghi Kevin R.1,Morrison David C.12

Affiliation:

1. Department of Basic Medical Sciences, University of Missouri-Kansas City,1 and

2. Saint Luke's Hospital-Kansas City,2Kansas City, Missouri

Abstract

ABSTRACT Lipoteichoic acids (LTA), cell wall components of gram-positive bacteria, have been reported to induce various inflammatory mediators and to play a key role in gram-positive-microbe-mediated septic shock. In a large number of these studies, investigators used commercially available LTA purified from a variety of gram-positive bacteria, including Staphylococcus aureus , Bacillus subtilis , and Streptococcus sanguis . We report here that, although these commercially available LTA could be readily shown to stimulate production of nitric oxide (NO) in RAW 264.7 mouse macrophages, the activity was dramatically inhibited by polymyxin B, a relatively specific inhibitor of endotoxin biological activity. One-step purification of the commercially available S. aureus LTA using hydrophobic interaction chromatography resulted in two well-separated peak fractions, one highly enriched for LTA and a second highly enriched for endotoxin. The LTA-enriched fractions did not induce production of NO in RAW 264.7 macrophages, although they caused a dose-dependent induction of NO in the presence of low concentrations of gamma interferon (IFN-γ) (which by itself induced little NO), regardless of the presence of polymyxin B. In contrast, the endotoxin-enriched fractions by themselves inhibited in high levels of NO in RAW 264.7 macrophages but activity was almost completely inhibited in the presence of polymyxin B. Consistent with these findings, our data also indicate that commercial LTA preparations from S. aureus , B. subtilis , and S. sanguis were not able to induce NO from lipopolysaccharide-hyporesponsive C3H/HeJ mouse peritoneal macrophages, but in the presence of IFN-γ, these LTA preparations were able to induce relatively high levels of NO from C3H/HeJ macrophages. These results indicate that commercially available LTA can contain contaminating and potentially significant levels of endotoxin that can be expected to contribute to the putative macrophage-stimulating effects of LTA as assessed by NO production. The fact that the purified LTA, by itself, was not able to induce significant levels of NO secretion in RAW 264.7 macrophages supports the conclusion that caution in attributing high-level biological activity to this microbial cell wall constituent should be exercised.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3