Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues

Author:

Andrews K. T.123,Tran T. N.12,Lucke A. J.4,Kahnberg P.4,Le G. T.4,Boyle G. M.1,Gardiner D. L.1,Skinner-Adams T. S.15,Fairlie D. P.4

Affiliation:

1. Queensland Institute of Medical Research, Herston, Queensland, Australia

2. Griffith Medical Research College, Joint Program of Griffith University and the Queensland Institute of Medical Research, Herston, Queensland, Australia

3. Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Queensland, Australia

4. Institute of Molecular Bioscience, University of Queensland, Queensland, Australia

5. School of Medicine, Central Medical Division, University of Queensland, Queensland, Australia

Abstract

ABSTRACT The malaria parasite Plasmodium falciparum has at least five putative histone deacetylase (HDAC) enzymes, which have been proposed as new antimalarial drug targets and may play roles in regulating gene transcription, like the better-known and more intensively studied human HDACs (hHDACs). Fourteen new compounds derived from l -cysteine or 2-aminosuberic acid were designed to inhibit P. falciparum HDAC-1 (PfHDAC-1) based on homology modeling with human class I and class II HDAC enzymes. The compounds displayed highly potent antiproliferative activity against drug-resistant (Dd2) or drug sensitive (3D7) strains of P. falciparum in vitro (50% inhibitory concentration of 13 to 334 nM). Unlike known hHDAC inhibitors, some of these new compounds were significantly more toxic to P. falciparum parasites than to mammalian cells. The compounds inhibited P. falciparum growth in erythrocytes at both the early and late stages of the parasite's life cycle and caused altered histone acetylation patterns (hyperacetylation), which is a marker of HDAC inhibition in mammalian cells. These results support PfHDAC enzymes as being promising targets for new antimalarial drugs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3