Distinct CD4 + -T-Cell Responses to Live and Heat-Inactivated Aspergillus fumigatus Conidia

Author:

Rivera Amariliz1,Van Epps Heather L.1,Hohl Tobias M.1,Rizzuto Gabrielle2,Pamer Eric G.1

Affiliation:

1. Infectious Diseases Service, Immunology Program, Department of Medicine, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center

2. Tri-Institutional MD/PhD Program, Sloan-Kettering Institute, New York, New York 10021

Abstract

ABSTRACT Aspergillus fumigatus is an important fungal pathogen that causes invasive pulmonary disease in immunocompromised hosts. Respiratory exposure to A. fumigatus spores also causes allergic bronchopulmonary aspergillosis, a Th2 CD4 + -T-cell-mediated disease that accompanies asthma. The microbial factors that influence the differentiation of A. fumigatus -specific CD4 + T lymphocytes into Th1 versus Th2 cells remain incompletely defined. We therefore examined CD4 + -T-cell responses of immunologically intact mice to intratracheal challenge with live or heat-inactivated A. fumigatus spores. Live but not heat-inactivated fungal spores resulted in recruitment of gamma interferon (IFN-γ)-producing, fungus-specific CD4 + T cells to lung airways, achieving A. fumigatus -specific frequencies exceeding 5% of total CD4 + T cells. While heat-inactivated spores did not induce detectable levels of IFN-γ-producing, A. fumigatus -specific CD4 + T cells in the airways, they did prime CD4 + T-cell responses in draining lymph nodes that produced greater amounts of interleukin 4 (IL-4) and IL-13 than T cells responding to live conidia. While immunization with live fungal spores induced antibody responses, we found a marked decrease in isotype-switched, A. fumigatus -specific antibodies in sera of mice following immunization with heat-inactivated spores. Our studies demonstrate that robust Th1 T-cell and humoral responses are restricted to challenge with fungal spores that have the potential to germinate and cause invasive infection. How the adaptive immune system distinguishes between metabolically active and inactive fungal spores remains an important question.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3