Recombinant interleukin-1 alpha and recombinant tumor necrosis factor alpha synergize in vivo to induce early endotoxin tolerance and associated hematopoietic changes

Author:

Vogel S N1,Kaufman E N1,Tate M D1,Neta R1

Affiliation:

1. Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.

Abstract

Endotoxin, the lipopolysaccharide (LPS) derived from gram-negative bacteria, invokes a wide range of responses in susceptible hosts. It is known that virtually all responses to LPS are mediated by the action of macrophage-derived cytokines (such as interleukin-1 [IL-1], tumor necrosis factor [TNF], and others) which are produced principally by macrophages and maximally within several hours of LPS administration. One manifestation of LPS administration which is not well understood is the phenomenon of "early endotoxin tolerance." In response to a single sublethal injection of LPS, experimental animals become refractory to challenge with a homologous or heterologous LPS preparation 3 to 4 days later. Animals rendered tolerant exhibit mitigated toxicity and a reduced capacity to produce circulating cytokines (i.e., colony-stimulating factor or interferon) in response to the challenge LPS injection. Previous studies have also shown that this state of transient, acquired hyporesponsiveness to LPS is accompanied by a marked increase in the size of cells in the bone marrow which are enriched in numbers of macrophage progenitors. In this study, we examined the capacity of recombinant IL-1 or recombinant TNF or both to induce early endotoxin tolerance and its associated hematopoietic changes. Neither cytokine alone was able to mimic LPS for induction of tolerance. Combined administration of recombinant IL-1 and recombinant TNF doses which were not toxic when administered individually led to synergistic toxicity (as assessed by death or weight loss). However, within a nontoxic range, the two cytokines synergized to induce a significant reduction in the capacity to produce colony-stimulating factor in response to LPS, as well as the characteristic increase in bone marrow cell size and macrophage progenitors shown previously to be associated with LPS-induced tolerance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference32 articles.

1. Interleukin 1: a common endogenous mediator of inflammation and the local Schwartzman;Beck G.;J. Immunol.,1986

2. Recombinant interleukin 1 suppresses lipoprotein lipase activity in 3T3-L1 cells;Beutler B.;J. Immunol.,1985

3. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance;Beutler B.;Science,1986

4. Passive immunization against cachectin-tumor necrosis factor protects mice from lethal effect of endotoxin;Beutler B.;Science,1985

5. An endotoxin induced serum factor that causes necrosis of tumors;Carswell W. A.;Proc. Natl. Acad. Sci. USA,1975

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3