Streptomyces Telomeres Contain a Promoter

Author:

Lin Yuh-ru1,Hahn Mi-Young2,Roe Jung-Hye2,Huang Tzu-Wen1,Tsai Hsiu-Hui1,Lin Yung-Feng1,Su Tsung-Sheng134,Chan Yu-Jiun5,Chen Carton W.1

Affiliation:

1. Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan

2. School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea

3. Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan

4. Department of Medical Research and Education, Taipei Veterans General Hospital, Shih-Pai, Taipei 112, Taiwan

5. Division of Clinical Virology, Taipei Veterans General Hospital, Shih-Pai, Taipei 112, Taiwan

Abstract

ABSTRACT Bidirectional replication of the linear chromosomes and plasmids of Streptomyces spp. results in single-strand overhangs at their 3′ ends, which contain extensive complex palindromic sequences. The overhangs are believed to be patched by DNA synthesis primed by a terminal protein that remains covalently bound to the 5′ ends of the telomeres. We discovered that in vitro a conserved 167-bp telomere DNA binds strongly to RNA polymerase holoenzyme and exhibits promoter activities stronger than those of an rRNA operon. In vivo, the telomere DNA exhibited promoter activity in both orientations on a circular plasmid in Streptomyces . The telomere promoter is also active on a linear plasmid during exponential growth. Such promoter activity in a telomere has not hitherto been observed in eukaryotic or prokaryotic replicons. Streptomyces telomere promoters may be involved in priming the terminal Okazaki fragment (during replication) replicative transfer (during conjugation), or expression of downstream genes (including a conserved ttrA helicase-like gene involved in conjugal transfer). Interestingly, the Streptomyces telomeres also function as a promoter in Escherichia coli and as a transcription enhancer in yeast.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3