Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions

Author:

Fu W1,Gorelick R J1,Rein A1

Affiliation:

1. ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201.

Abstract

We have characterized the dimeric genomic RNA in particles of both wild-type and protease (PR)-deficient human immunodeficiency virus type 1 (HIV-1). We found that the dimeric RNA isolated from PR- mutant virions has a lower mobility in nondenaturing gel electrophoresis than that from wild-type virions. It also dissociates into monomers at a lower temperature than the wild-type dimer. Thus, the dimer in PR- particles is in a conformation different from that in wild-type particles. These results are quite similar to recent findings on Moloney murine leukemia virus and suggest that a postassembly, PR-dependent maturation event is a common feature in genomic RNAs of retroviruses. We also measured the thermal stability of the wild-type and PR- dimeric RNAs under different ionic conditions. Both forms of the dimer were stabilized by increasing Na+ concentrations. However, the melting temperatures of the two forms were not significantly affected by the identity of the monovalent cation present in the incubation buffer. This observation is in contrast with recent reports on dimers formed in vitro from short segments of HIV-1 sequence: the latter dimers are specifically stabilized by K+ ions. K+ stabilization of dimers formed in vitro has been taken as evidence for the presence of guanine quartet structures. The results suggest that guanine quartets are not involved in the structure linking full-length, authentic genomic RNA of HIV-1 into a dimeric structure.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 232 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transcription start site choice regulates HIV-1 RNA conformation and function;Current Opinion in Structural Biology;2024-10

2. HIV-1 RNA genome packaging: it’s G-rated;mBio;2024-04-10

3. Understanding Retroviral Life Cycle and its Genomic RNA Packaging;Journal of Molecular Biology;2023-02

4. Early HIV-1 Gag Assembly on Lipid Membrane with vRNA;2023-01-28

5. References;Structures and Functions of Retroviral RNAs;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3