Functional and biological properties of an avian variant long terminal repeat containing multiple A to G conversions in the U3 sequence

Author:

Felder M P1,Laugier D1,Yatsula B1,Dezélée P1,Calothy G1,Marx M1

Affiliation:

1. Unité de Recherche Associée 1443 du Centre National de la Recherche Scientifique, Institut Curie, Centre Universitaire, Orsay, France.

Abstract

We previously reported that infection of chicken embryonic neuroretina cells with Rous-associated virus type 1 leads to the frequent occurrence of spliced readthrough transcripts containing viral and cellular sequences. Generation of such chimeric transcripts constitutes a very early step in oncogene transduction. We report, here, the isolation of a c-mil transducing retrovirus, designated IC4, which contains a highly mutated U3 sequence in which 48% of A is converted to G. Functional analysis of this variant U3 indicated that these mutations do not impair viral transcription and replication; however, they abolish functioning of its polyadenylation signal, thus allowing readthrough transcription of downstream cellular sequences. On the basis of these results, we designed a nonreplicative retroviral vector, pIC4Neo, expressing the neomycin resistance (Neo(r)) gene under the control of the IC4 long terminal repeat. Infection of nondividing neuroretina cells with virus produced by a packaging cell line transfected with pIC4Neo occasionally resulted in sustained cell proliferation. Two independent G418-resistant proliferating cultures were found to express hybrid RNAs containing viral and cellular sequences. These sequences were characterized by reverse transcription-PCR and were identified in both cultures, suggesting that proliferation was correlated with a common integration locus. These results indicate that IC4Neo virus functions as a useful insertional mutagen and may allow identification of genes potentially involved in regulation of cell division.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3