The Two-Component Monooxygenase MeaXY Initiates the Downstream Pathway of Chloroacetanilide Herbicide Catabolism in Sphingomonads

Author:

Cheng Minggen12,Meng Qiang1,Yang Youjian1,Chu Cuiwei1,Chen Qing3,Li Yi4,Cheng Dan5,Hong Qing1,Yan Xin1,He Jian15

Affiliation:

1. Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China

2. Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China

3. College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China

4. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China

5. Laboratory Center of life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China

Abstract

ABSTRACT Due to the extensive use of chloroacetanilide herbicides over the past 60 years, bacteria have evolved catabolic pathways to mineralize these compounds. In the upstream catabolic pathway, chloroacetanilide herbicides are transformed into the two common metabolites 2-methyl-6-ethylaniline (MEA) and 2,6-diethylaniline (DEA) through N -dealkylation and amide hydrolysis. The pathway downstream of MEA is initiated by the hydroxylation of aromatic rings, followed by its conversion to a substrate for ring cleavage after several steps. Most of the key genes in the pathway have been identified. However, the genes involved in the initial hydroxylation step of MEA are still unknown. As a special aniline derivative, MEA cannot be transformed by the aniline dioxygenases that have been characterized. Sphingobium baderi DE-13 can completely degrade MEA and use it as a sole carbon source for growth. In this work, an MEA degradation-deficient mutant of S. baderi DE-13 was isolated. MEA catabolism genes were predicted through comparative genomic analysis. The results of genetic complementation and heterologous expression demonstrated that the products of meaX and meaY are responsible for the initial step of MEA degradation in S. baderi DE-13. MeaXY is a two-component flavoprotein monooxygenase system that catalyzes the hydroxylation of MEA and DEA using NADH and flavin mononucleotide (FMN) as cofactors. Nuclear magnetic resonance (NMR) analysis confirmed that MeaXY hydroxylates MEA and DEA at the para -position. Transcription of meaX was enhanced remarkably upon induction of MEA or DEA in S. baderi DE-13. Additionally, meaX and meaY were highly conserved among other MEA-degrading sphingomonads. This study fills a gap in our knowledge of the biochemical pathway that carries out mineralization of chloroacetanilide herbicides in sphingomonads. IMPORTANCE Much attention has been paid to the environmental fate of chloroacetanilide herbicides used for the past 60 years. Microbial degradation is considered an important mechanism in the degradation of these compounds. Bacterial degradation of chloroacetanilide herbicides has been investigated in many recent studies. Pure cultures or consortia able to mineralize these herbicides have been obtained. The catabolic pathway has been proposed, and most key genes involved have been identified. However, the genes responsible for the initiation step (from MEA to hydroxylated MEA or from DEA to hydroxylated DEA) of the downstream pathway have not been reported. The present study demonstrates that a two-component flavin-dependent monooxygenase system, MeaXY, catalyzes the para -hydroxylation of MEA or DEA in sphingomonads. Therefore, this work finds a missing link in the biochemical pathway that carries out the mineralization of chloroacetanilide herbicides in sphingomonads. Additionally, the results expand our understanding of the degradation of a special kind of aniline derivative.

Funder

Project of University-Industry Collaboration of Guangdong Province

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3