Bacterial enrichment at the gas-water interface of a laboratory apparatus

Author:

Powelson D K,Mills A L

Abstract

The gas-water interface (GWI) is likely to have important effects on bacterial adsorption and transport in unsaturated porous media. A glass apparatus that isolated GWIs in ports above a flowthrough suspension of a groundwater bacterial isolate was used to represent unsaturated porous media. The surface microlayer was collected by placing a polycarbonate filter on the GWI. The filter was stained, and the bacteria were enumerated by direct count. The significance of five independent variables on the surface density of cells (s, in cells per square millimeter) was determined by nonlinear multiple regression. Three of the variables were shown to be significant: surfactant concentration (d), time (t), and bulk bacterial concentration (B). The surface density decreased with increasing d and increased with increasing t and B. When surfactant was absent, the GWI became highly enriched in bacteria. For example, when d = 0, 48 h < t < 72 h, and 5,000 cells mm(sup-3) < B < 10,000 cells mm(sup-3), s averaged 3.0 x 10(sup4) cells mm(sup-2). This surface density occupied about 6.0% of the GWI, and the surface microlayer concentration of cells was 190 times the bulk concentration. The other two variables: pH (p) and ionic strength (I) were shown to be insignificant. The strong effect of d and the lack of effect of I and p support the hypothesis that hydrophobic interaction dominates bacterial adsorption to the GWI.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference30 articles.

1. Transport of microorganisms through soil;Abu-Ashour J.;Water Air Soil Pollut.,1994

2. Surface inactivation of bacterial viruses and of proteins;Adams M. H.;J. Gen. Physiol.,1948

3. Boyd J. W. T. Yoshida L. E. Vereen R. L. Cada and S. M. Morrison. 1969. Bacterial response to the soil environment. Sanitary Engineering Papers no.

4. Colorado State University Fort Collins Colo.

5. DeFeijter J. A. and J. Benjamins. 1989. Adsorption kinetics of proteins at the air-water interface p. 72-85. In E. Dickinson (ed.) Food emulsions and foams. Royal Society of Chemistry London.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3