IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers

Author:

Harmer Christopher J.1ORCID,Hall Ruth M.1ORCID

Affiliation:

1. School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia

Abstract

SUMMARY In Gram-negative bacteria, the insertion sequence IS 26 is highly active in disseminating antibiotic resistance genes. IS 26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS 26 can also enhance expression of adjacent potential resistance genes. IS 26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS 26 . TU formed by homologous recombination between the bounding IS 26 s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS 26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS 26 is the best characterized IS in the IS 26 family, which includes IS 257 /IS 431 , ISSau10, IS 1216 , IS 1006 , and IS 1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.

Funder

DHAC | National Health and Medical Research Council

Publisher

American Society for Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3