Bacillus subtilis stress-associated mutagenesis and developmental DNA repair

Author:

Pedraza-Reyes Mario1ORCID,Abundiz-Yañez Karen1ORCID,Rangel-Mendoza Alejandra1ORCID,Martínez Lissett E.1ORCID,Barajas-Ornelas Rocío C.1ORCID,Cuéllar-Cruz Mayra1ORCID,Leyva-Sánchez Hilda C.2ORCID,Ayala-García Víctor M.3ORCID,Valenzuela-García Luz I.4ORCID,Robleto Eduardo A.2ORCID

Affiliation:

1. Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico

2. School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA

3. Faculty of Chemical Sciences, Juarez University of Durango State, Durango, Mexico

4. Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico

Abstract

SUMMARY The metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10 −9 ) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

NIH

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3