Bottom-Up versus Top-Down Control of Hypo- and Epilimnion Free-Living Bacterial Community Structures in Two Neighboring Freshwater Lakes

Author:

Berdjeb Lyria1,Ghiglione Jean-François2,Jacquet Stéphan1

Affiliation:

1. INRA, UMR CARRTEL, 75 Avenue de Corzent, 74200 Thonon-les-Bains, France

2. CNRS, UMR 7621, Laboratoire d'Océanographie Biologique de Banyuls, BP44, 66650 Banyuls-sur-Mer, France

Abstract

ABSTRACT Bacterioplankton plays a central role in the microbial functioning of lacustrine ecosystems; however, factors that constrain its structural variation are still poorly understood. Here we evaluated the driving forces exerted by a large set of environmental and biological parameters on the temporal and spatial dynamics of free-living bacterial community structures (BCS) in two neighboring perialpine lakes, Lake Bourget and Lake Annecy, which differ in trophic status. We analyzed monthly data from a 1-year sampling period at two depths situated in the epi- and hypolimnia for each lake. Overall, denaturing gradient gel electrophoresis (DGGE) revealed significant differences in the BCS in the two lakes, characterized by a higher number of bands in the oligotrophic ecosystem (i.e., Lake Annecy). The temporal dynamics of BCS differed greatly between depths and lakes, with temporal scale patterns being much longer in the mesotrophic Lake Bourget. Direct-gradient multivariate ordination analyses showed that a complex array of biogeochemical parameters was the driving force behind BCS shifts in both lakes. Our results indicated that 60 to 80% of the variance was explained only by the bottom-up factors in both lakes, indicating the importance of nutrients and organic matter from autotrophic origin in controlling the BCS. Top-down regulation by flagellates together with ciliates or viruses was found only in the hypolimnion and not in the epilimnion for both lakes and explained less than 18% of the bacterial community changes during the year. Our study suggests that the temporal dynamics of the free-living bacterial community structure in deep perialpine lakes are dependent mainly on bottom-up factors and to a lesser extent on top-down factors, whatever the specific environmental conditions of these lakes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3