Bacteriophage Transport in Sandy Soil and Fractured Tuff

Author:

Bales Roger C.1,Gerba Charles P.1,Grondin Gerald H.1,Jensen Stephen L.1

Affiliation:

1. Department of Hydrology and Water Resources and Department of Microbiology and Immunology, 2 University of Arizona, Tucson, Arizona 85721

Abstract

Bacteriophage transport was investigated in laboratory column experiments using sandy soil, a controlled field study in a sandy wash, and laboratory experiments using fractured rock. In the soil columns, the phage MS-2 exhibited significant dispersion and was excluded from 35 to 40% of the void volume but did not adsorb. Dispersion in the field was similiar to that observed in the laboratory. The phage f2 was largely excluded from the porous matrix of the two fractured-rock cores studied, coming through 1.2 and 2.0 times later than predicted on the basis of fracture flow alone. Because of matrix diffusion, nonsorbing solutes were retarded by over a factor of three relative to fracture flow. The time for a solute tracer to equilibrate with the porous matrix of 6.5-cm-diameter by 25-cm-long cores was measured in days. Results of both granular-medium and fractured-rock experiments illustrate the inability of a solute tracer to provide estimates for dispersion and effective porosity that are applicable to a colloid. Bacteriophage can be used to better estimate the maximum subsurface transport rate of colloidal contaminants through a porous formation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3