Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells

Author:

Crawford S E1,Labbé M1,Cohen J1,Burroughs M H1,Zhou Y J1,Estes M K1

Affiliation:

1. Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030.

Abstract

Rotaviruses are triple-layered particles that contain four major capsid proteins, VP2, VP4, VP6, and VP7, and two minor proteins, VP1 and VP3. We have cloned each of the rotavirus genes coding for a major capsid protein into the baculovirus expression system and expressed each protein in insect cells. Coexpression of different combinations of the rotavirus major structural proteins resulted in the formation of stable virus-like particles (VLPs). The coexpression of VP2 and VP6 alone or with VP4 resulted in the production of VP2/6 or VP2/4/6 VLPs, which were similar to double-layered rotavirus particles. Coexpression of VP2, VP6, and VP7, with or without VP4, produced triple-layered VP2/6/7 or VP2/4/6/7 VLPs, which were similar to native infectious rotavirus particles. The VLPs maintained the structural and functional characteristics of native particles, as determined by electron microscopic examination of the particles, the presence of nonneutralizing and neutralizing epitopes on VP4 and VP7, and hemagglutination activity of the VP2/4/6/7 VLPs. The production of VP2/4/6 particles indicated that VP4 interacts with VP6. Cell binding assays performed with each of the VLPs indicated that VP4 is the viral attachment protein. Chimeric particles containing VP7 from two different G serotypes also were obtained. The ability to express individual proteins or to coexpress different subsets of proteins provides a system with which to examine the interactions of the rotavirus structural proteins, the role of individual proteins in virus morphogenesis, and the feasibility of a subunit vaccine.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3