Klebsiella pneumoniae K2 capsular polysaccharide degradation by a bacteriophage depolymerase does not require trimer formation

Author:

Ye Ting-Juan1ORCID,Fung Kit-Man1ORCID,Lee I-Ming2ORCID,Ko Tzu-Ping1ORCID,Lin Chia-Yi1,Wong Chia-Ling1,Tu I-Fan1,Huang Tzu-Yin1,Yang Feng-Ling1,Chang Yu-Pei1,Wang Jin-Town34ORCID,Lin Tzu-Lung3,Huang Kai-Fa1ORCID,Wu Shih-Hsiung15ORCID

Affiliation:

1. Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan

2. Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan

3. Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan

4. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

5. Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan

Abstract

ABSTRACT K2-capsular Klebsiella pneumoniae is a hypervirulent pathogen that causes fatal infections. Here, we describe a phage tailspike protein, named K2-2, that specifically depolymerizes the K2 capsular polysaccharide (CPS) of K. pneumoniae into tetrasaccharide repeating units. Nearly half of the products contained O -acetylation, which was thought crucial to the immunogenicity of CPS. The product-bound structures of this trimeric enzyme revealed intersubunit carbohydrate-binding grooves, each accommodating three tetrasaccharide units of K2 CPS. The catalytic residues and the key interactions responsible for K2 CPS recognition were identified and verified by site-directed mutagenesis. Further biophysical and functional characterization, along with the structure of a tetrameric form of K2-2, demonstrated that the formation of intersubunit catalytic center does not require trimerization, which could be nearly completely disrupted by a single-residue mutation in the C-terminal domain. Our findings regarding the assembly and catalysis of K2-2 provide cues for the development of glycoconjugate vaccines against K. pneumoniae infection. IMPORTANCE Generating fragments of capsular polysaccharides from pathogenic bacteria with crucial antigenic determinants for vaccine development continues to pose challenges. The significance of the C-terminal region of phage tailspike protein (TSP) in relation to its folding and trimer formation remains largely unexplored. The polysaccharide depolymerase described here demonstrates the ability to depolymerize the K2 CPS of K. pneumoniae into tetrasaccharide fragments while retaining the vital O -acetylation modification crucial for immunogenicity. By carefully characterizing the enzyme, elucidating its three-dimensional structures, conducting site-directed mutagenesis, and assessing the antimicrobial efficacy of the mutant enzymes against K2 K. pneumoniae , we offer valuable insights into the mechanism by which this enzyme recognizes and depolymerizes the K2 CPS. Our findings, particularly the discovery that trimer formation is not required for depolymerizing activity, challenge the current understanding of trimer-dependent TSP activity and highlight the catalytic mechanism of the TSP with an intersubunit catalytic center.

Funder

National Science and Technology Council

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3