Novel l -Cysteine-Dependent Maleylpyruvate Isomerase in the Gentisate Pathway of Paenibacillus sp. Strain NyZ101

Author:

Liu Ting-Ting1,Zhou Ning-Yi1

Affiliation:

1. Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

Abstract

ABSTRACT Glutathione- and mycothiol-dependent maleylpyruvate isomerases are known to be involved, respectively, in gentisate catabolism in Gram-negative and high G+C Gram-positive strains. In the present study, a low-G+C Gram-positive Paenibacillus sp. strain, NyZ101, was isolated and shown to degrade 3-hydroxybenzoate via gentisate. A 6.5-kb fragment containing a conserved region of gentisate 1,2-dioxygenase genes was cloned and sequenced, and four genes ( bagKLIX ) were shown to encode the enzymes involved in the catabolism to central metabolites of 3-hydroxybenzoate via gentisate. The Bag proteins share moderate identities with the reported enzymes in the 3-hydroxybenzoate catabolism, except BagL that had no obvious homology with any functionally characterized proteins. Recombinant BagL was purified to homogeneity as a His-tagged protein and likely a dimer by gel filtration. BagL was demonstrated to be a novel thiol-dependent maleylpyruvate isomerase catalyzing the isomerization of maleylpyruvate to fumarylpyruvate with l -cysteine, cysteinylglycine, or glutathione, as its cofactor. The K m values of these three thiols for BagL were 15.5, 8.4, and 552 μM, respectively. Since cysteine and coenzyme A were reported to be abundant in low-G+C Gram-positive strains, BagL should utilize l -cysteine as its physiological cofactor in vivo . The addition of Ni 2+ increased BagL activity, and site-directed mutagenesis experiments indicated that three conserved histidines in BagL were associated with binding to Ni 2+ ion and were necessary for its enzyme activity. BagL is the first characterized l -cysteine-dependent catabolic enzyme in microbial metabolism and is likely a new and distinct member of DinB family, with a four-helix-bundle topology, as deduced by sequence analysis and homology modeling.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3