Altered regulation of inducible nitric oxide synthase expression in macrophages from senescent mice

Author:

Chen L C1,Pace J L1,Russell S W1,Morrison D C1

Affiliation:

1. Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA.

Abstract

We investigated the capacity of mouse macrophages obtained from senescent animals to respond in vitro to microbial stimuli. Significant hypersecretion of nitric oxide (NO) was observed in thioglycolate-elicited macrophages from senescent mice compared with those obtained from young mice in response to lipopolysaccharide (LPS). In contrast, both cell populations manifested equivalent responses to LPS with respect to tumor necrosis factor alpha secretion. Further, macrophages from senescent animals also showed potentiated responses to both zymosan and heat-killed Staphylococcus aureus, as assessed by NO production. Both cell populations were equivalently inhibited by a competitive inhibitor of NO synthase NG-monomethyl-L-arginine. Since endogenous beta interferon (IFN-beta) is recognized as an essential cofactor for LPS-induced NO production by macrophages, we investigated the role of IFN-beta in enhancing the capacity of both macrophage populations for LPS-induced NO production. Macrophages from young mice were minimally activated by LPS alone to express inducible NO synthase (iNOS), and the response was significantly potentiated by the addition of IFN-beta. These findings were confirmed by immunocytochemical staining of iNOS in which the frequency of iNOS-positive cells in response to LPS was enhanced in the presence of IFN-beta. Reverse transcription-PCR analyses revealed that macrophages from senescent animals produced larger amounts of iNOS mRNA in response to LPS. Further, exogenous IFN-beta potentiated iNOS mRNA expression in macrophages from young mice. In contrast, the frequency of LPS-activated macrophages for iNOS expression was markedly increased during senescence and addition of IFN-beta did not significantly change this frequency. These results correlated with reverse transcription PCR data showing high levels of iNOS mRNA in LPS-stimulated macrophages from senescent mice. LPS-induced NO production in macrophages from both young and senescent mice was inhibited by neutralizing antibody to either IFN-beta or IFN-gamma. Mixed cultures of macrophages from young and senescent mice stimulated with LPS manifested significantly enhanced NO production relative to that which would be predicted from an additive response of the two macrophage populations stimulated separately. The differential responsiveness of NO production observed with thioglycolate-elicited macrophages from young and senescent mice was also observed in resident macrophages but, interestingly, not in bone marrow culture-derived macrophages. These results suggest that environmental factors may be responsible for the potentiated NO responses of macrophages from senescent mice. Collectively, these data suggest that macrophages from senescent animals manifest an altered mechanism for regulation of macrophage function in NO production and iNOS expression by constitutive and/or induced expression of autoregulatory cytokines.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3