Antibody-Mediated Killing of Carbapenem-Resistant ST258 Klebsiella pneumoniae by Human Neutrophils

Author:

Kobayashi Scott D.1,Porter Adeline R.1,Freedman Brett1,Pandey Ruchi2,Chen Liang2,Kreiswirth Barry N.2,DeLeo Frank R.1

Affiliation:

1. Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA

2. Public Health Research Institute Tuberculosis Center, New Jersey Medical School-Rutgers University, Newark, New Jersey, USA

Abstract

ABSTRACT Carbapenem-resistant Klebsiella pneumoniae is a problem worldwide. A carbapenem-resistant K. pneumoniae lineage classified as multilocus sequence type 258 (ST258) is prominent in the health care setting in many regions of the world, including the United States. ST258 strains can be resistant to virtually all clinically useful antibiotics; treatment of infections caused by these organisms is difficult, and mortality is high. As a step toward promoting development of new therapeutics for ST258 infections, we tested the ability of rabbit antibodies specific for ST258 capsule polysaccharide to enhance human serum bactericidal activity and promote phagocytosis and killing of these bacteria by human neutrophils. We first demonstrated that an isogenic wzy deletion strain is significantly more susceptible to killing by human heparinized blood, serum, and neutrophils than a wild-type ST258 strain. Consistent with the importance of capsule as an immune evasion molecule, rabbit immune serum and purified IgG specific for ST258 capsule polysaccharide type 2 (CPS2) enhanced killing by human blood and serum in vitro . Moreover, antibodies specific for CPS2 promoted phagocytosis and killing of ST258 by human neutrophils. Collectively, our findings suggest that ST258 CPS2 is a viable target for immunoprophylactics and/or therapeutics. IMPORTANCE Infections caused by carbapenem-resistant K. pneumoniae are difficult to treat, and mortality is high. New prophylactic approaches and/or therapeutic measures are needed to prevent or treat infections caused by these multidrug-resistant bacteria. A strain of carbapenem-resistant K. pneumoniae , classified by multilocus sequence typing as ST258, is present in many regions of the world and is the most prominent carbapenem-resistant K. pneumoniae lineage in the United States. Here we show that rabbit antibodies specific for capsule polysaccharide of ST258 significantly enhance human serum bactericidal activity and promote phagocytosis and killing of this pathogen by human neutrophils. These studies have provided strong support for the idea that development of an immunotherapy (vaccine) for carbapenem-resistant K. pneumoniae infections is feasible and has merit.

Funder

HHS | National Institutes of Health

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3