Effect of Deficiency of Tumor Necrosis Factor Alpha or Both of Its Receptors on Streptococcus pneumoniae Central Nervous System Infection and Peritonitis

Author:

Wellmer Andreas1,Gerber Joachim1,Ragheb Jasmin1,Zysk Gregor2,Kunst Tammo1,Smirnov Alexander1,Brück Wolfgang3,Nau Roland1

Affiliation:

1. Departments of Neurology1 and

2. Institute of Medical Microbiology and Hygiene, University of Düsseldorf, Düsseldorf,2 Germany

3. Neuropathology,3 University of Göttingen, Göttingen, and

Abstract

ABSTRACT Tumor necrosis factor alpha (TNF-α) and TNF-β are key mediators in bacterial inflammation. We therefore examined the role of TNF-α and its two receptors in murine pneumococcal central nervous system infection. TNF-α knockout mice and age- and sex-matched controls and TNF receptor (p55 and p75)-deficient mice and heterozygous littermates were infected intracerebrally with a Streptococcus pneumoniae type 3 strain. Mice were monitored until death or were killed 36 h after infection. Bacterial titers in blood, spleen, and brain homogenates were determined. Leukocyte infiltration and neuronal damage were assessed by histological scores. TNF-α-deficient mice died earlier than the controls after intracerebral infection although overall survival was similar. TNF-α deficiency did not inhibit leukocyte recruitment into the subarachnoid space and did not lead to an increased density of bacteria in brain homogenates. However, it caused a substantial rise of the concentration of S. pneumoniae cells in blood and spleen. Spleen bacterial titers were also increased in p55- and p75-deficient mice. TNF receptor-deficient mice showed decreased meningeal inflammation. Neuronal damage was not affected by either TNF-α or TNF receptor deficiency. In a murine model of pneumococcal peritonitis, 10 2 CFU of S. pneumoniae produced fatal peritonitis in TNF-α-deficient, but not wild-type, mice. Early leukocyte influx into the peritoneum was impaired in TNF-α-deficient mice. The lack of TNF-α or its receptors renders mice more susceptible to S. pneumoniae infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3