Pathway and Evolutionary Implications of Diphenylamine Biodegradation by Burkholderia sp. Strain JS667

Author:

Shin Kwanghee A.1,Spain Jim C.1

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0512

Abstract

ABSTRACT Diphenylamine (DPA) is a common contaminant at munitions-contaminated sites as well as at aniline manufacturing sites. Little is known about the biodegradation of the compound, and bacteria able to use DPA as the growth substrate have not been reported. Burkholderia sp. strain JS667 and Ralstonia sp. strain JS668 were isolated by selective enrichment from DPA-contaminated sediment. The isolates grew aerobically with DPA as the sole carbon, nitrogen, and energy source. During induction of DPA degradation, stoichiometric amounts of aniline accumulated and then disappeared, which suggested that aniline is on the DPA degradation pathway. Genes encoding the enzymes that catalyze the initial steps in DPA degradation were cloned from the genomic DNA of strain JS667. The Escherichia coli clone catalyzed stoichiometric transformation of DPA to aniline and catechol. Transposon mutagenesis, the sequence similarity of putative open reading frames to those of well-characterized dioxygenases, and 18 O 2 experiments support the conclusion that the initial reaction in DPA degradation is catalyzed by a multicomponent ring-hydroxylating dioxygenase. DPA is converted to aniline and catechol via dioxygenation at the 1,2 position of the aromatic ring and spontaneous rearomatization. Aniline and catechol are further biodegraded by the well-established aniline degradation pathway. Genes that encode the complete aniline degradation pathway were found 12 kb downstream of the genes that encode the initial dioxygenase. Expression of the relevant dioxygenases was confirmed by reverse transcription-PCR analysis. Both the sequence similarity and the gene organization suggest that the DPA degradation pathway evolved recently by the recruitment of two gene clusters that encode the DPA dioxygenase and aniline degradation pathway.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3