Synergistic and Additive Effects of Chromosomal and Plasmid-Encoded Hemolysins Contribute to Hemolysis and Virulence in Photobacterium damselae subsp. damselae

Author:

Rivas Amable J.1,Balado Miguel1,Lemos Manuel L.1,Osorio Carlos R.1

Affiliation:

1. Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain

Abstract

ABSTRACT Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyA pl ). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyA ch ). Hemolysis was completely abolished in a single hlyA ch mutant of a plasmidless strain and in a dly hlyA pl hlyA ch triple mutant. We found that Dly, HlyA pl , and HlyA ch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyA pl and HlyA ch , on the one hand, and of the synergistic effect of Dly with HlyA pl and HlyA ch , on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP ( C hristie, A tkins, and M unch- P etersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyA pl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3