Affiliation:
1. Unité des Rickettsies, Centre National de la Recherche Scientifique EP J0054, Faculté de Médecine, Marseille, France.
Abstract
The male-killing ladybird beetle (LB) bacterium (AB bacterium) was analyzed with specific rickettsial molecular biology tools in the LB Adalia bipunctata strains. Eight phenotype-positive LB strains showing mortality of male embryos were amplified with rickettsial genus-specific primers from the gene for citrate synthase (CS) and the gene for a 17-kDa protein and spotted fever group-specific primers from the gene for the 120-kDa outer membrane protein (ompB). The specificity of amplification was confirmed by Southern hybridization and the absence of the above-listed gene products in three phenotype-negative LB strains. Restriction polymorphism patterns of three examined amplicons from the CS gene, 17-kDa-protein gene, and ompB gene were identical among the eight phenotype-positive LB strains and were unique among all known rickettsiae of the spotted fever and typhus groups. Amplified fragments of the CS genes of the AB bacterium, Rickettsia prowazekii Breinl, Rickettsia typhi Wilmington, Rickettsia canada 2678, and Rickettsia conorii 7 (Malish) were sequenced. The greatest differences among the above-listed rickettsial and AB bacterium CS gene sequences were between bp 1078 and 1110. Numerical analysis based on CS gene fragment sequences shows the close relationships of the AB bacterium to the genus Rickettsia. Expanding of knowledge about rickettsial arthropod vectors and participation of rickettsiae in the cytoplasmic maternal inheritance of arthropods is discussed.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献