Reconstitution of a Thermostable Xylan-Degrading Enzyme Mixture from the Bacterium Caldicellulosiruptor bescii

Author:

Su Xiaoyun,Han Yejun,Dodd Dylan,Moon Young Hwan,Yoshida Shosuke,Mackie Roderick I.,Cann Isaac K. O.

Abstract

ABSTRACTXylose, the major constituent of xylans, as well as the side chain sugars, such as arabinose, can be metabolized by engineered yeasts into ethanol. Therefore, xylan-degrading enzymes that efficiently hydrolyze xylans will add value to cellulases used in hydrolysis of plant cell wall polysaccharides for conversion to biofuels. Heterogeneous xylan is a complex substrate, and it requires multiple enzymes to release its constituent sugars. However, the components of xylan-degrading enzymes are often individually characterized, leading to a dearth of research that analyzes synergistic actions of the components of xylan-degrading enzymes. In the present report, six genes predicted to encode components of the xylan-degrading enzymes of the thermophilic bacteriumCaldicellulosiruptor besciiwere expressed inEscherichia coli, and the recombinant proteins were investigated as individual enzymes and also as a xylan-degrading enzyme cocktail. Most of the component enzymes of the xylan-degrading enzyme mixture had similar optimal pH (5.5 to ∼6.5) and temperature (75 to ∼90°C), and this facilitated their investigation as an enzyme cocktail for deconstruction of xylans. The core enzymes (two endoxylanases and a β-xylosidase) exhibited high turnover numbers during catalysis, with the two endoxylanases yielding estimatedkcatvalues of ∼8,000 and ∼4,500 s−1, respectively, on soluble wheat arabinoxylan. Addition of side chain-cleaving enzymes to the core enzymes increased depolymerization of a more complex model substrate, oat spelt xylan. TheC. besciixylan-degrading enzyme mixture effectively hydrolyzes xylan at 65 to 80°C and can serve as a basal mixture for deconstruction of xylans in bioenergy feedstock at high temperatures.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference44 articles.

1. Cell-wall carbohydrates and their modification as a resource for biofuels;Pauly;Plant J.,2008

2. Cellulose and the evolution of plant life;Duchesne;Bioscience,1989

3. Cellodextrin transport in yeast for improved biofuel production;Galazka;Science,2010

4. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass;Steen;Nature,2010

5. Zymomonas mobilis for fuel ethanol and higher value products;Rogers;Adv. Biochem. Eng. Biotechnol.,2007

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3